Stochastic analysis of a miRNA-protein toggle switch.

نویسندگان

  • E Giampieri
  • D Remondini
  • L de Oliveira
  • G Castellani
  • P Lió
چکیده

Within systems biology there is an increasing interest in the stochastic behavior of genetic and biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous time Markov chain (CTMC). In this paper we consider the stochastic properties of a toggle switch, involving a protein compound (E2Fs and Myc) and a miRNA cluster (miR-17-92), known to control the eukaryotic cell cycle and possibly involved in oncogenesis, recently proposed in the literature within a deterministic framework. Due to the inherent stochasticity of biochemical processes and the small number of molecules involved, the stochastic approach should be more correct in describing the real system: we study the agreement between the two approaches by exploring the system parameter space. We address the problem by proposing a simplified version of the model that allows analytical treatment, and by performing numerical simulations for the full model. We observed optimal agreement between the stochastic and the deterministic description of the circuit in a large range of parameters, but some substantial differences arise in at least two cases: (1) when the deterministic system is in the proximity of a transition from a monostable to a bistable configuration, and (2) when bistability (in the deterministic system) is "masked" in the stochastic system by the distribution tails. The approach provides interesting estimates of the optimal number of molecules involved in the toggle switch. Our discussion of the points of strengths, potentiality and weakness of the chemical master equation in systems biology and the differences with respect to deterministic modeling are leveraged in order to provide useful advice for both the bioinformatician and the theoretical scientist.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise in Genetic Toggle Switch Models

In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach...

متن کامل

miRNAs confer phenotypic robustness to gene networks by suppressing biological noise

miRNAs are small non-coding RNAs able to modulate target gene expression. It has been postulated that miRNAs confer robustness to biological processes, but clear experimental evidence is still missing. Here, using a synthetic biological approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. We con...

متن کامل

Chemical models of genetic toggle switches.

We study by mean-field analysis and stochastic simulations chemical models for genetic toggle switches formed from pairs of genes that mutually repress each other. To determine the stability of the genetic switches, we make a connection with reactive flux theory and transition state theory. The switch stability is characterized by a well-defined lifetime tau. We find that tau grows exponentiall...

متن کامل

Modelling and Analysis of a Synthetic Bistable Genetic Switch

In the field of systems and synthetic biology there has been an increasing interest for the use of genetic circuits during the last decade. Several circuits have been successfully put together, many of which were based on models. During this thesis a model for a toggle switch was analysed both deterministically and stochastically. The HOM2-circuit approximation for a bistable tuneable switch fr...

متن کامل

A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2011